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Abstract: In the machine learning field, the traditional deep learning models are mostly of discriminative type in which their 
goal is to discover a map from input layers to output layers. Also, these models require large amount of annotated data for 
training. On the other hand, deep generative models (DGMs) provide a new way to learn features effectively from the sample 
data which do not require the labeled data. Among the many DGMs, generative adversarial networks (GANs) are the 
emerging models for both semi-supervised and unsupervised learning. GANs use a pair of discriminator and generator 
networks which are used in competitive process to learn the effective features. However, the implementation of GANs suffers 
against the challenging problem of stability of training. This paper discusses the review and challenges of the implementation 
of GANs. We review different GAN models such as deep convolutional GAN (DCGAN), Wasserstein GAN (WGAN), 
WGAN with gradient penalty (WGAN-GP) and boundary equilibrium GAN (BEGAN) which improve the stability of the its 
training. The improvement in terms of stability of these GANs is evaluated by conducting the different experiments on the 
common database of Fashion-MNIST. Additionally, the mode collapse problem of GAN is tackled using unrolled GAN 
which is also reviewed and discussed. 
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Introduction 
In the machine learning, deep learning models extract the features from the data samples effectively by using a deep 
architecture which is designed based on non-linear transformations. These deep learning models are mostly discriminative in 
nature where the main goal is to discover a map from inputs to outputs. However, these models have several limitations: i) 
they require vast amounts of annotated data; ii) they fail drastically when given inputs are not similar to the inputs of training 
set. Among many types of deep models, deep generative models (DGMs) are powerful for unsupervised and semi-supervised 
learning in which instead of discriminating the inputs, they try to replicate the (hidden) statistical process within the data 
without relying on external labels. They start by generating “hallucinations” that become more realistic and plausible as the 
learning process evolves. DGMs learn the abstract representations from unlabeled data and perform a wide range of tasks, 
including density estimation, data generation and missing value estimation. The most common deep neural network based 
generative models are variational auto-encoders (VAEs) [1] and generative adversarial networks (GANs) [2], [3]. Training of 
these models are based on Bayesian deep learning [4], variational approximations [5], Monte Carlo Markov chain (MCMC) 
estimation [6], or the old faithful stochastic gradient estimation (SGD) [7].  
Literature shows that the GANs are one of the most promising areas of research in unsupervised learning. Many models 
based on GAN have been proposed by the researcher in order to improve its performance [8]–[15]. At the same time, as deep 
learning became popular, the need for huge amounts of data has risen. GANs tend to fill these gaps as they propose a 
generative model for natural images that evolves to generate more and more realistic looking data, because of the coupling 
with an adversarial network.  
In practice, training in GAN is very challenging task. The relative model capacities of the generator and discriminator must 
be carefully balanced in order for the generator to effectively learn. In this paper, we discusses the review and challenges of 
the implementation of GANs. We review the different GAN models such as deep convolutional GAN (DCGAN) [8], 
Wasserstein GAN (WGAN) [12], WGAN with gradient penalty (WGAN-GP) [13] and boundary equilibrium GAN 
(BEGAN) [15] which improve the stability of the GANs training. These models are implemented on the common database of 
Fashion-MNIST and evaluated based on stability criteria. In addition to that, the mode collapse problem of GAN is reduced 
by using unrolled GAN [10] which is also reviewed and discussed. 
 
Background of GAN  
GAN was proposed by Ian Goodfellow at the university of Montreal in the year of 2014. The main idea behind the GANs is 
to have two competing neural network models. Goodfellow et al. [2] use simple multi-layer perceptrons (MLP) for both the 
networks. In these two networks, one takes noise as input and generates the data samples (called the generator (G) network) 
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and the other network (called the discriminator (D)) receives samples from both the generator and the training data and its 
task is to distinguish between the two data coming from two sources.   
Let, pdata is a target distribution which is required by generator model G to learn by approximating it with the model 
distribution, pmodel. G is associated with a noise prior pz, from which G draws samples z, and create fake sample 퐺(푧; 	휃 ). 
Here, 휃  are the model parameters. The discriminator 퐷(푧; 	휃 ) takes x and G(z) as input, and returns a binary judgment as to 
whether the given input is from pdata or pmodel. 휃  are the model parameters of discriminator network D. The goal of GANs is 
to train the generator network 퐺(푧; 	휃 ) which produces samples from the model distribution, pmodel(x), by transforming 
vectors of noise z as 푥 = 퐺(푧; 	휃 ). The training signal for G is provided by a discriminator network 퐷(푧; 	휃 ) which is 
trained to distinguish samples from the generator distribution pmodel(x) from real data. In other words, generator network 
퐺(푧; 	휃 ) is trained to fool the discriminator to accept its outputs as being real. These two networks play a continuous game, 
where the generator learns to produce more and more realistic samples, and the discriminator is learning to get better and 
better at distinguishing generated data from real data. These two networks are trained simultaneously, and the hope is that the 
competition will drive the generated samples to be indistinguishable from real data.  
The GAN learning problem is to find the optimal parameters 휃∗  for a generator function 퐺(푧; 	휃 ) in a minimax objective as 
[2], [3], 

휃∗ = arg푚푖푛 푚푎푥 푓(휃 ,휃 ) 
     		= 	arg푚푖푛 푓(휃 ,휃∗ (휃 ))        (1) 

              휃∗ (휃 ) = arg 	푚푎푥 푓(휃 ,휃 )        (2) 
where minimax loss function f commonly chosen as, 

푓(휃 ,휃 ) = 	 퐸 ∽ log 퐷(푥;휃 ) + 퐸 ∽ [log(1− (퐷(퐺(푧;휃 );휃 )].     (3) 
Here, 푥 ∈ 푋 is the data variable, 푧 ∈ 푍 is the latent variable, the discriminator 퐷(⋅;휃 ):푋 → [0, 1] outputs the estimated 
probability that a sample x comes from the data distribution, 퐺(⋅;휃 ):푍 → 푋 transforms a sample in the latent space into a 
sample in the data space. Here, function of D is to minimize the value of D(G(z)) as it is generated sample and at the same 
time it also functions to increase the value of D(x) to indicate it as the real data. For optimization of equation (1), Goodfellow 
et al. [2] propose an algorithm in which gradient descent on 휃  and ascent on 휃  are used in alternating way. This process 
continued until pmodel draws closer to pdata and eventually reaches an equilibrium point where D can no longer classify 
samples as real or generated samples (i.e., D(x) = D(G(z)) = 1/2). Finally, the optimal solution 휃∗ = (휃∗ , 	휃∗ ) is a fixed point 
of these iterative learning dynamics. 
 
Challenges of GANs  
One of the challenges in standard GAN [2] is the nonconvergence between two networks. This is because of the term 
log(1 −퐷(퐺(푧)) in in equation (3) which rapidly saturates in the early stage of training, where D easily rejects G(z) because 
G generates fake data of poor quality and they continuously differ from the real data. Therefore, rather than evaluating how 
bad fake data, evaluate how good they are by setting G’s goal to maximizing  log(퐷(퐺(푧)).  
Another most important challenge of standard GAN [2] is its stability in training. Despite the theoretical existence of unique 
solutions, GANs training is challenging and often unstable due to many reasons [8], [9]. One way to improve the stability of 
training is to assess the empirical “symptoms” which are observed during the training of GANs. These symptoms include: 

 Difficulties in the simultaneous convergence of both models [8]; 
 The generative model may create “mode collapsing” which means to generate very similar samples for different 

inputs [9]; 
 The discriminator loss converging quickly to zero [16], providing no reliable path for gradient updates to the 

generator; 
 More powerful discriminator would fail the generator to train effectively [9], [15]; 
 Difficulties in controlling the diversity of the generated samples [15]; 
 Difficulties in balancing convergence between discriminator and generator as the discriminator wins easily at the 

beginning of the training; 
 Less impressive results of generating samples for wider variety of visual worlds [11] 

 
Discussion on Stability Improvement of GANS  
There are various methods proposed in the literature to overcome the stability issues of GANs. In this section, we discuss few 
important methods which can improves the stability of GANs and also solve the difficulties of GAN’s training. 
 
Deep convolutional GAN (DCGAN) [8] 
Radford et al. [8] proposed a DCGAN model which was the first major improvements in the training of GANs for image 
generation. DCGAN uses a standard convolutional neural network (CNN) components, such as deconvolutional layers, fully 
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connected layers, etc. Authors propose a set of guidelines which are used in the construction and training of model. 
Following are the guidelines to stable the training of DCGAN [8]: 

 Replace any pooling layers with strided convolution in discriminator and fractional-strided convolution in generator 
network. 

 Use batchnorm in both generator as well as discriminator networks. 
 Remove fully connected hidden layers for deeper architectures. 
 Use ReLU activation function in generator for all layers except for the output, which uses tanh. 
 Use LeakyReLU activation in the discriminator for all layers. 

By using above guidelines, Redford et al. [8] obtain accuracy upto 82.8% with error rate of 22.48% on CIFAR10 dataset in 
image classification. The performance of DCGAN is still poor when compared to CNN based model [17] and also authors 
found that the generator collapse sometimes due to its large learning rate. In order to improve stability, lower learning rate is 
required. 
 
Improved techniques for training of GANs [9] 
In order to improve the stability of GAN’s training, Salimans et al. [9] propose heuristic approaches. They suggest some 
small changes to the GANs training scheme that lead to visually improved results. The first technique is about feature 
matching which changes the generator objective slightly in order to increase the amount of information available. The new 
objective is written as, 

∥ 퐸 ∼ 푓(푥) − 퐸 ∼ 푓 퐺(푧) ∥ ,        (4) 
 
where f is some intermediate layer in D. The discriminator is still trained to distinguish between real and fake samples, but 
now the generator is trained to match the discriminator’s fake sample expected intermediate activations (features) with the 
real samples expected intermediate activations. 
The second trick is for preventing mode collapse problem in GANs which produces the same samples for different inputs. 
Authors use mini-batch discrimination in order to overcome mode collapse problem in which an extra input is added to the 
discriminator. This extra input behaves as a feature that encodes the distance between a given sample in a mini-batch and the 
other samples. By using this concept, the discriminator can easily tell if the generator is producing the same outputs. 
A third approach is heuristic averaging which adds penalty term to the network parameters if they deviate from historical 
average values. This can help to converge to an equilibrium condition which may not be possible with normal gradient 
descent. The fourth technique is virtual batch normalization. Here, authors normalize each example with respect to the 
examples in a reference batch, which was picked once at the start of the training. This reduces the dependency of one sample 
on the other samples in the mini-batch and improves optimization of neural network. 
Finally, one-sided label smoothing technique makes the target for the discriminator 0.9 instead of 1 and smoothing the 
discriminators classification boundary. This technique prevent discriminator for being more powerful than generator so that 
generator would train more effectively. 
All above techniques are incorporated by Salimans et al. [9] in their work and perform experiments using semi-supervised 
training. They generated the samples from different databases such as MNIST, CIFAR-10 and ImageNet and obtain the error 
rate of 14.87% on CIFAR10 database for a given number of labeled samples. This error rate value is lower than that of using 
standard GANs. Additionally, authors also compare the samples generated by the generator during semisupervised training 
obtained using feature matching and minibatch discrimination techniques. Authors achieve improvement in the visual quality 
of the generated samples using mini-batch discrimination. Furthermore, authors also claim that by using their heuristic 
approaches, the stability as well as image quality are improved over the ordinary GAN. 
 
Unrolled GANs [10] 
In [10], Metz et al. demonstrate the issue related to mode collapse and also discuss how to improve the stability of GANs. 
Authors propose a method which unroll the discriminator for several steps, i.e., discriminator updates on the current 
generator for several steps, and then using the “unrolled” discriminators to update the generator using the normal minimax 
objective. As compare to GAN, in the loss function (equation (3)), Metz et al. [10] introduce a surrogate objective function 
푓 (휃 ;휃 ) for training the generator which more closely resembles the true generator objective 푓(휃 ;	휃∗ (휃 ). In unrolled 
GAN, a local optimum of the discriminator parameters 휃∗  can be expressed as the fixed point of an iterative optimization 
procedure,  

휃 = 휃 + 휂 ( , )         (5) 

where, 휂  is the learning rate schedule. By unrolling for K steps, authors create a surrogate objective for the update of the 
generator as, 

       푓 (휃 ;휃 ) = 푓(휃 ; 	휃 (휃 ;휃 )        (6) 
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This surrogate loss term captures how the discriminator would react to a change in the generator. It reduces the tendency of 
the generator to engage in mode collapse. However, drawbacks of this approach are the increased training time which 
increases linearly with the number of unrolling steps and a more complicated gradient calculation. 
In their experiments, Metz et al. use the convolutional neural network as discriminator and the recurrent neural network as 
generator. Due to this, the resulting model has more complex in power balance. Authors also observe that without unrolling, 
the model quickly collapses to a single mode and rotates around the data distribution. When running with unrolling steps the 
generator disperses and appears to cover the whole data distribution. 
 
Wasserstein GAN (WGAN) [12] 
The standard GAN [2] uses a Jensen-Shannon (JS) divergence to optimize the loss function. However, JS divergence does 
not provide enough information when the discrepancy is too large and also it is not differentiable to every point in space 
which makes the gradients in GANs vanish over most of the time. In order to solve above issues, Arjovsky et al. [12] suggest 
to use Wasserstein distance (also known as Earth mover distance) which is differentiable nearly everywhere in the space. 
They propose Wasserstein GAN (WGAN) which uses an alternative loss function which is derived from an approximation of 
Wasserstein distance. The intuition behind the Wasserstein distance is as the probability distributions are defined by how 
much mass they can put on each point. WGAN use this distance in the loss function. However, computing Wasserstein 
distance exactly is intractable. Hence, authors tried to compute it approximately by using Kantorovich-Rubinstein duality 
form. A result from Kantorovich-Rubinstein duality is equivalent to 

푊(푝 ,푝 ) = 푠푢푝∥ ∥ [퐸 ∼ 푓(푥) −퐸 ∼ 푓(푥)]      (7) 
 

where the supremum is taken over all 1-Lipschitz functions.  
Unlike the standard GAN’s cost function [2], the WGAN is more likely to provide gradients that are useful for updating the 
generator. The cost function derived for the WGAN relies on the discriminator, which is referred as the “critic”; practically, 
this may be implemented by simply clipping the parameters of the discriminator.  
In standard GAN [2], gradients vanish over most of the space while in WGAN, the weight clamping gives a reasonably nice 
gradient over everything. The WGAN samples are in more details and hence they do not mode collapse as much as standard 
GAN [2]. WGAN method [12] is experimented for image generation. The target distribution is learned for the LSUN-
Bedrooms dataset [18] which is a collection of natural images of indoor bedrooms. Authors have demonstrated the 
performance of WGAN approach with different generator architectures and observe that Wasserstein estimate correlates well 
with the visual quality of the generated samples. Authors also reported that the training of WGAN becomes unstable at times 
when one uses a momentum based optimizer such as Adam optimizer on the critic. 
 
WGAN with gradient penalty (WGAN-GP) [13] 
Basically, WGAN designs to stabilize the training process of GANs. However, it generates the low-quality samples and also 
more often fails to converge due to the use of weight clipping which arises due to Lipschitz constraint in discriminator. This 
weight clipping adversely reduces the capacity of the discriminator model and forces it to learn simpler functions. Gulrajani 
et al. [13] propose an improved method for training the discriminator of WGAN by penalizing the norm of discriminator 
gradients with respect to data samples during training, rather than performing parameter clipping. To circumvent tractability 
issues, authors enforce a soft version of the constraint with a penalty on the gradient norm for random samples푥 ∼ 푝 . The 
new objective loss function is 

퐿 = 퐸 ∼ 퐷 퐺(푧) −퐸 ∼ [퐷(푥)] + 휆퐸 ∼ [(∥ ∇ 퐷(푥) ∥ − 1) ].      (8) 
 
One advantage over weight clipping is in terms of improvement achieved in the speed of training and quality of sample 
generated by the generator. By adapting penalty term to the standard GAN’s objective function [2], it may stabilize the 
training and encourages the discriminator to learn smoother decision boundaries. It performs better than standard WGAN and 
enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, such as 101-layer 
ResNets.  
To demonstrate the stability of training process, Gulrajani et al. [13] trained the proposed GAN with the different 
architectures on LSUN bedrooms dataset. Based on the results authors conclude that the critics trained with weight clipping 
fail to capture higher moments of the data distribution while WGAN with gradient penalty can capture the same in effective 
way. Also, they found that their method improve the training speed and sample quality when compared to WGAN with 
weight clipping [12]. However, convergence rate is slow when compared to DCGAN, but performance is more stable at the 
point of convergence when compared to DCGAN. 
 
Boundary equilibrium GAN (BEGAN) [15] 
Many tricks have been applied in order to improve the training of GANs [8], [9]. However, there are still many difficulties 
which are unaddressed for the practical implementation of GANs. These include selection of correct hyper-parameters, 
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controlling the image diversity of the generated samples since discriminator wins too easily at the beginning of training [3], 
balancing the convergence of the discriminator and generator. To overcome these issues, David et al. [15] propose a new 
model based on equilibrium called boundary equilibrium GAN (BEGAN) which is paired with a loss derived from a 
Wasserstein distance for training the auto-encoder based GANs. This method balances the power of the discriminator against 
the generator during training.  
In the BEGAN framework, the discriminator is an auto-encoder. The main idea behind the BEGAN is to match the 
distributions of the reconstruction losses of generated sample distribution with the data distributions. The real loss is then 
derived from a Wasserstein distance between the reconstruction losses of real and generated data. In training, D reconstructs 
real images more better and the weights of D are updated so that the reconstruction loss of real images is minimized. 
Additionally, D simultaneously increases the reconstruction loss of generated images and G works adversarially to that by 
minimizing the reconstruction loss of generated images. David et al. also introduce a convergence measure M which is an 
indicator to measure network’s performance. It is also used to control learning rate. This measure can be used to determine 
when the network has reached its final state or if the model has collapsed.  
BEGAN [15] is trained on CelebA dataset [19] using Adam optimizer with an initial learning rate of 0.0001 with decaying 
factor of 2. Authors compare the effect of varying parameter gamma ϒ on sample generation. Here, authors observe that for 
low value of gamma ϒ, the faces look overly uniform and variety increases with different values of ϒ. The convergence 
measure Mglobal of the BEGAN model which correlates well with image fidelity. Here, model converges quickly. To test the 
robustness of the equilibrium balancing technique, author perform an experiment advantaging the discriminator over the 
generator, and vice versa and they observe that by maintaining the equilibrium the model remained stable and converged to 
meaningful results. 
 
Results and Discussions 
In this section, we discuss the experimental results obtained using the implementation of different GANs. As discussed 
earlier, the stability of GANs is improved with different GAN models such as WGAN [12], WGAN-GP [13] and BEGAN 
[15] better than the GAN models proposed in DCGAN [8] and the method proposed in [9]. Due to this, here we have 
included the experimental results obtained using WGAN [12], WGANGP [13] and BEGAN [15] only. In addition to that, we 
also obtain the experimental results using unrolled GAN [10] which prevents the mode collapse problem effectively in 
standard GAN [2] and same are discussed. All these experiments were performed on a machine with Intel i7 6850k CPU, 
64GB RAM and NVIDIA GeForce Titax X Pascal GPU. We trained all the architectures on Fashion-MNIST dataset [20] 
which is a new dataset comprising of 28 × 28 grayscale images of 70; 000 fashion products from 10 different categories and 
of 7; 000 images per category. In our experiments, we use Adam optimizer with learning rate of 0:0002 which is decaying by 
the factor of 2. We set the batch size of 64 and iterate upto 25 epochs where 1 epoch is equal to 1093 iterations. 
Fig. 1 shows the image samples generated during the different training periods for WGAN [12], WGAN-GP [13] and 
BEGAN [15] methods. One can observe that the quality of images generated with standard GAN model is poor. This is 
mainly because of the poor convergence of discriminator and generator distribution losses. The samples generated by WGAN  
[12] model are also not better. 
This is because of the use of Adam optimizer in critic as mentioned by the authors. It is interesting to observe that the images 
generated with WGAN-GP [13] and BEGAN [15] are better when compared to the same with GAN [2] and WGAN [12]. 
However, one can observe that convergence of BEGAN [15] is faster than that of the WGANGP [13]. Due to this, better 
image samples are generated with BEGAN [15] when compared to that with WGAN-GP [13] (see Fig. 1).  
Furthermore, we have also trained unrolled GAN [10] on a 2D mixture of 8 Gaussians of 0.02 standard deviation and means 
are arranged equally spaced in a circle to understand the mode collapse problem. Both, discriminator as well as generator 
networks are optimized using Adam optimizer with learning rate of 1e-4 and 1e-3, respectively. The results are compared 
with standard GAN [2] (unrolling step = 0) which are displayed in the first row of Fig. 3. Here, a heatmap of the generator 
distributions after increasing number of training steps is showed. The green dots arranged around circle indicate target data 
distribution. By looking at top row results (i.e., standard GAN [2]), one can see that the generator never converges to a fix 
distribution and it assigns mass probability to a few fixed points only. However, in the case of unrolling step 5 (i.e., unrolloed 
GAN [10]), generator quickly spreads out and converges to the target distribution. This results in minimization of mode 
collapse problem. 
 
Conclusion 
GANs have made breakthroughs to unsupervised and semi-supervised learning in the area of deep learning. The practical 
implementation of GANs becomes very challenging mainly due to stability issue in training phase. We have discuss the 
standard GAN and its challenges. In order to solve those challenges, we have discuss the other well known GANs model 
which can mitigate stability problem to improve the training at some extent. 
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Fig. 1: Generated image samples during different training periods for GAN [2], WGAN [12], WGAN-GP [13] and 
BEGAN [15] model obtained using Fashion-MNIST dataset 

 

 
 

Fig. 3: Behaviour of mode collapse in GAN [2] and unrolled GAN [10] 
 
DCGAN was the first model that use the concepts of CNN which improves the training of GAN. Salimans et al. [9] suggest 
few techniques to GANs architecture that improves the training stability. As mode collapse is the major issue which occurs 
due to instability of GANs. Luke et al. [10] introduced unrolled GAN that removes this mode collapse problem but this 
method required more training time and complicated gradient calculations. While in WGAN, Arjovsky et al. [12] claim that 
their model never running into mode collapse. By using Wasserstein distance loss function, WGAN model improve the 
stability of its model. However, it still generates low-quality samples due to the use of weight clipping. Gulrajani et al. [13] 
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propose new model called WGAN with gradient penalty that overcome the problems of WGAN. In prior GAN models, 
controlling the image quality and balancing the convergence between generator and discriminator are difficult. David et al. 
[15] propose a BEGAN model by using the equilibrium term which can balance the power of the discriminator against the 
generator and therefore model remains stable and achieves meaningful results.  
We implemented the above GAN models observe that WGAN [12], WGAN-GP [13] and BEGAN [15] models are better to 
stabilize the training of GANs. We experiments on these three models on common dataset and compare the results. Here, we 
found that results obtained using WGANGP are better than GANs and WGAN. However, due to the equilibrium terms in 
BEGAN, it can result in improved sample quality with fast convergence. Furthermore, our experiments on unrolled GAN 
[10] conclude that the main issue of mode collapse can be reduced by adding unrolling steps to discriminator to update the 
generator weights. 
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